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Abstract

In this paper we propose a new finite volume evolution Galerkin (FVEG) scheme for the shallow water magneto-

hydrodynamic (SMHD) equations. We apply the exact integral equations already used in our earlier publications to

the SMHD system. Then, we approximate these integral equation in a general way which does not exploit any partic-

ular property of the SMHD equations and should thus be applicable to arbitrary systems of hyperbolic conservation

laws in two space dimensions. In particular, we investigate more deeply the approximation of the spatial derivatives

which appear in the integral equations. The divergence free condition is satisfied discretely, i.e. at each vertex. First

numerical results confirm reliability of the numerical scheme.
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1. Introduction

We consider a system of hyperbolic conservation laws
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otU þrx � FðUÞ ¼ 0:
We use here the notation of the first author�s dissertation [14], in which underlined symbols denote row vec-
tors with d components and boldfaced symbols denote column vectors with m components. The double

underlined symbols, that will be used later, denote row vectors with m components.
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Most classical numerical schemes for such systems are based on solving one-dimensional Riemann prob-

lems across the interfaces of a structured or unstructured mesh. The roots of this idea go back to Godunov

[10], who invented the prototype of these schemes for one-dimensional systems.

However, there is an ongoing discussion, initiated by Roe [30], whether schemes which are based on

solving one-dimensional Riemann problems can reflect all multidimensional effects occurring in multidi-
mensional systems. In the literature we can find several genuinely multidimensional numerical schemes,

which purposely dispensed with Riemann solvers, see e.g. [7,8,25,17,3].

In this paper, we will deal with the evolution Galerkin (EG) schemes, which also belong to this class of

multidimensional Riemann solver free approaches. The main idea of these schemes is to evolve the solution

along the bicharacteristic curves forming the Mach cone and then project it into the approximation space.

Exact evolution of the solution in time is represented by the integral equations for a linear(ized) system, i.e.

a solution representation involving integrals over intermediate time levels. In order to use this integral equa-

tions numerically, integrals are approximated by suitable numerical quadratures yielding the so-called
approximate evolution operators. A paper due to Butler [4] can be considered to be the first contribution

to the EG approach. This operator was later stated in a general way by Ostkamp [26,27], who also showed

that there is a certain connection between the EG approach and Fey�s [7,8] Method of Transport.

In the last years, Lukáčová, Morton et al. [19–22] constructed several EG schemes for the wave equation

system, the shallow water equations, and the Euler equations, where they soon embedded the evolution

operators into a finite volume framework, obtaining the so-called finite volume evolution Galerkin (FVEG)

schemes. Extensive experimental treatment confirms that the EG and FVEG schemes approximate cor-

rectly complex multidimensional structures of solutions, e.g. circular expansion wave, oblique shocks,
etc. Numerical comparisons with other well-known schemes illustrate high global accuracy of the FVEG

schemes. For example the second order FVEG method is six times more accurate than the Lax–Wendroff

scheme as well as the LeVeque wave propagation algorithm for linear hyperbolic systems, whereas the com-

putational costs are comparable with the LeVeque scheme, see [20].

On the other hand, Kröger et al. [15,14] developed a framework of the so-called state decompositions, in

which they examined the connection between the EG approach and the Method of Transport more deeply

and managed to clarify an important difference between these approaches. At the same time, this frame-

work offers the possibility to consider the EG approach from a different point of view.
In the current paper, we introduce an FVEG scheme for the shallow water magnetohydrodynamic

(SMHD) equations. These equations were (to our knowledge) first proposed by Gilman [9] as an approx-

imation to the ideal MHD equations in the situation of a free-surface, shallow, and electrically conducting

fluid that has constant density and is in magnetohydrostatic balance in the vertical direction.

There are two main difficulties for the numerical treatment of the full MHD equations:

� The magnetic field should be kept divergence-free in any time.

� The numerical update should produce fully multidimensional as well as non-oscillatory solutions near
discontinuities.

Since the full system of the MHD equations has a complicated eigenstructure, it is desirable to have a

simpler model system that retains both main difficulties but at the same time has a simpler eigenstructure.

The SMHD system not only serves as a simplified mathematical model, but it has its own physical appli-

cability used in the description of the solar tachocline, i.e. a thin layer of the solar radius that separates the

convective zone from the radiative zone in stars, cf. [6,9].

As far as we know, this is the first FVEG approach for these equations. A second new property of the
scheme is that it is mainly a black-box approach: while former approximate evolution operators, used in the

FVEG schemes, were mostly specially designed for the individual system, the current scheme does not

exploit any particular property of the SMHD equations. Therefore, the scheme should be applicable to
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any system of hyperbolic conservation laws in two space dimensions without major changes. 1 In general it

is also possible to apply the scheme to the ideal MHD equations (for two-dimensional problems), but fur-

ther considerations due to a more complicated structure of the full MHD equations are necessary in order

to obtain an efficient method. In this paper we content ourselves with the study of a model SMHD system.

The first numerical experiments presented here show that the scheme gives good numerical results and indi-
cate the reliability of the FVEG scheme for the modelling of the SMHD system.

The outline of this paper is as follows: in Section 2, we introduce briefly the SMHD equations and dis-

cuss a variant of them which is no longer conservative, but simpler and will in particular have a simpler

hyperbolic structure. Next, in Section 3, we state the integral equations in an abstract, but compact, form

which is also used in the works of Kröger et al. [15,14]. A brief description of the FVEG schemes follows in

Section 4. We explain in detail how our new scheme works in Section 5. This mainly consists of a descrip-

tion of the used approximation techniques in the evolution operator as well as in the finite volume update

formula. A main focus is set on the approximation of the spatial derivatives which occur in the evolution
operator, since all the other approximations are performed using standard techniques. To summarize the

presentation of the FVEG scheme for the SMHD equations we finish the Section 5 with the presentation

of the numerical algorithm. Section 6 contains a couple of numerical experiments. Finally, in Section 7, we

derive some conclusions.
2. The SMHD equations

2.1. The SMHD system of hyperbolic conservation laws

The SMHD equations were, as far as we know, first proposed by Gilman [9]. Afterwards, DeSterck [6]

and Rossmanith [31], among others, worked on these equations. The SMHD equations can be derived from

the ideal MHD equations. They model the dynamics of a constant density, shallow, and electrically con-

ducting fluid that is hydrostatically balanced in the vertical direction. A detailed derivation is given by

Rossmanith [31]. The result is a system of m = 5 equations in d = 2 space dimensions, which is given by
1 H
ot ~U þrx � Fð ~UÞ ¼ Cð ~UÞ; ð2:1Þ
where
~U ¼
h

huT

hBT

0
B@

1
CA; Fð ~UÞ ¼

hu

huTu� hBTBþ 1
2
gh21

hBTu� huTB

0
B@

1
CA; Cð ~UÞ ¼

0

�ghrb

0T

0
B@

1
CA: ð2:2Þ
More precisely, we can rewrite (2.1) as
ot ~U þ ox1F1ð ~UÞ þ ox2F2ð ~UÞ ¼ Cð ~UÞ ð2:3Þ

with
Fð ~UÞ ¼ F1ð ~UÞ;F2ð ~UÞ
� �

:

The system (2.1) or (2.3), is moreover accompanied with the intrinsic constraint
r � ðhBÞ ¼ 0: ð2:4Þ
owever, we exploit essentially the fact that the physical space is two-dimensional, i.e. d = 2.
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Recall that the notation is adopted from [14]. Further, g > 0 is the gravitational constant, and b = b(x)

describes the bottom topography. In the current paper, we restrict ourselves to the case of a flat bottom,

i.e. b = const., so that the system is homogeneous. We deal with the numerical approximation of the

time-dependent system (2.1) and derive the approximation of the divergence constraint (2.4), which is sat-

isfied by a numerical solution. Note that this constraint is also exploited in the reformulation of the system
(2.1) which is realized in Section 2.2.

These equations can be rewritten in terms of the primitive variables U = (h,u,B)T, yielding
othþ urhþ hrTuT ¼ 0;

otuþ grTh� 1

h
BrhBþ uru�rTBTB� BrB ¼ 0;

otB� 1

h
Brhu� Bruþ urB�rTBTu ¼ 0;
where the symbol $ always denotes a column vector of derivatives. This can be written in the form
otU þ
X2
s¼1

~A
s
ðUÞoxsU ¼ 0; ð2:5Þ
where
~A
1
n1 þ ~A

2
n2 ¼

u � n hn 0

gnT � 1
h ðB � nÞBT ðu � nÞ1 �BTn� ðB � nÞ1

� 1
h ðB � nÞuT �ðB � nÞ1 ðu � nÞ1� uTn

0
B@

1
CA;
1 denotes a 2 · 2 unit matrix, and n = (n1,n2) is an arbitrary non-zero vector in R2. Of course, the system

(2.5) will have a different solutions than (2.1) in the case of discontinuities, but this does not matter since we

will use the system (2.1), that is written in the conservative form, in the finite volume update. Nevertheless,
(2.5) is suitable to examine the hyperbolic structure of the system and derive the approximate evolution

operator, cf. Section 5.

2.2. A Powell-like form for the SMHD equations

The SMHD equations have got the intrinsic constraint $ Æ (hB) = 0. This means, that the exact solution

will satisfy this constraint for all time if it holds for the initial data. This can be seen by computing

ot($ Æ (hB)). In physically relevant problems, the initial data will always satisfy this constraint.
This is a similarity to the MHD equations, in which $ Æ B remains zero for all time. In 1972, Godunov

[11] exploited this property by adding certain multiples of $ Æ B to each equation – thus not changing the

exact solutions in the physically relevant situation – in such a way that the resulting equations have nicer

properties. Later, Powell [28] used this form for a numerical scheme. This alternative form of the MHD

equations, which we will call �Powell�s form�, was also favored by Brackbill and Barnes [1] and by Kröger

[14]. Since in particular the hyperbolic structure of the system becomes much simpler for Powell�s form, we

find it desirable to construct a Powell-like form for the SMHD equations as well. Here we may add a multi-

ple of
r � ðhBÞ ¼ rThBT þ hrTBT ¼ Brhþ hrTBT
rather than $ Æ B to each equation. By this, we can easily get the simpler system
othþ urhþ hrTuT ¼ 0;
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otuþ grThþ uru� BrB ¼ 0;

otB� Bruþ urB ¼ 0:
If we write it in the compact vector form
otU þ
X2
s¼1

A
s
ðUÞoxsU ¼ 0; ð2:6Þ
we get
A
1
n1 þ A

2
n2 ¼

u � n hn 0

gnT ðu � nÞ1 �ðB � nÞ1
0 �ðB � nÞ1 ðu � nÞ1

0
B@

1
CA: ð2:7Þ
The system (2.6) is a starting point for developing a suitable approximation of the integral equations,

which is used in order to predict fluxes on cell interfaces in the FVEG schemes, cf. (4.2).
3. Integral equations

3.1. Overview for general systems

For a general linear hyperbolic system
otU þ
Xd
s¼1

A
s
oxsU ¼ 0; ð3:1Þ
one has the exact integral equations, which were first proposed by Ostkamp [26] and later extensively used

by Lukáčová et al. [19–22]. They can be derived using the general characteristic theory for linear(ized)

hyperbolic systems and written in the compact, but abstract, form
Uðx; tnþ1Þ ¼
1

jSd�1

Xm
k¼1

 Z
Sd�1

rknl
k
n
Uðx� Dtrnk

k
n; tnÞdn

þ
Z tnþ1

tn

Z
Sd�1

rknl
k
n

Xd
s¼1

ðonskkn � 1� A
s
ÞoxsUðxþ ðs� tnþ1Þrnk

k
n; sÞdnds

!
: ð3:2Þ
Here, rkn; lkn and kkn are the right eigenvectors, left eigenvectors, and the eigenvalues of the matrix pencilPd
s¼1As

ns, respectively. We assume that the left and right eigenvectors are normalized such that lknr
k
n ¼ 1.

Note that rnk
k
n are the ray velocities arising from the multidimensional characteristic theory, compare

[5,13,29], or [14]. It can be shown that
onsk
k
n ¼ lk

n
A

s
rkn; s ¼ 1; . . . ; d: ð3:3Þ
Thus, there is the alternative representation ðlknA1
rkn; . . . ; l

k
nAd

rknÞ for the ray velocities rnk
k
n.

We should point out that for a non-linear system, there is also a fully non-linear form of (3.3), see [14].

However, this leads to a more complex formula. Hence, for practical applications, it seems to be easiest to

apply (3.2) to a linearized system. In other words, one first freezes the matrices A
s
(and therefore, also the

eigenvectors and eigenvalues) at a given state Û , and then applies (3.2). In this paper, we always denote by

Û the linearization state, whereas �U denotes the solution of the linearized system. With this notation, the

linearized system reads
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ot �U þ
Xd
s¼1

A
s
ðÛÞoxs �U ¼ 0:
Notationsˆ and ˇ are also used for any conservative or primitive variables with the obvious meanings. How-

ever, for a better readability, we leave out both notations whenever there is no danger of confusion.
3.2. Application to the SMHD equations

Instead of deriving the respective integral representations for the primitive components h, u, and B aris-

ing from the general operator (3.2) we content ourselves with giving suitable representations for the ingre-

dients appearing in the general formula. We do this for the Powell-like form (2.7) derived in Section 2.2. A

representation for the matrices A
s
has already been given in (2.7) The eigenvalues read
k1n ¼ u � nþ B � n; k2n ¼ u � n� B � n; k3n ¼ u � nþ W ; k4n ¼ u � n� W ; k5n ¼ u � n;
where we used the abbreviation
W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB � nÞ2 þ gh nj j2

q
:

We call the first two wave modes Alfvén waves, the third and the fourth ones are the magneto-gravity waves

and the last mode, which propagates with the fluid speed, is called the non-physical mode in an analogy to

the ideal MHD equations.

The corresponding right eigenvectors are
r1n ¼
1

2jnj2

0

�pT

pT

0
B@

1
CA; r2n ¼

1

2jnj2

0

pT

pT

0
B@

1
CA; r3n ¼

1

2jnj2W 2

hjnj2

nTW

�nTðB � nÞ

0
B@

1
CA;

r4n ¼
1

2jnj2W 2

hjnj2

�nTW

�nTðB � nÞ

0
B@

1
CA; r5n ¼

1

W 2

B � n
0T

nTg

0
B@

1
CA;
and the left eigenvectors read
l1
n
¼ ð0;�p; pÞ; l2

n
¼ ð0; p; pÞ; l3

n
¼ gjnj2; nW ;�nðB � nÞ
� �

; l4
n
¼ gjnj2;�nW ;�nðB � nÞ
� �

;

l5
n
¼ ðB � n; 0; nhÞ;
where for the given normal direction n, we denote by p the transversal direction, which in the two-dimen-

sional case is canonically (up to a factor ±1) given by
p ¼ ð�n2; n1Þ:
Note that this becomes essentially different in three dimensions where, as a consequence of the Hedgehog

theorem, there cannot be a canonical basis of the two-dimensional space of transversal directions.

Finally, we also give the following formulae for the ray velocities
rnk
1
n ¼ uþ B; rnk

2
n ¼ u� B; rnk

3
n ¼ uþ BðB � nÞ þ ngh

W
; rnk

4
n ¼ u� BðB � nÞ þ ngh

W
; rnk

5
n ¼ u:
One main advantage of the SMHD equations over the MHD equations is that there are no case distinc-

tions or singular cases in the evaluation of the hyperbolic structure. In fact, the given formulae for the
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eigenvectors do not cause numerical problems in the evaluation as far as physically reasonable restric-

tions g > 0 and h > 0 hold. If B Æ n = 0, i.e. the normal magnetic field vanishes, we get a triple eigenvalue

u Æ n. Fig. 3.1 shows the shape of the wave fronts, the so-called Friedrichs diagrams, for a selection of

linearization states.

Note that it can easily be seen that, up to shift, rotation, and scale operations, the shape of the wave
fronts is completely defined by the scalar parameter |B|2/gh. The given selection of wave fronts is represen-

tative in the sense that it contains one example for each of the cases where the parameter |B|2/gh is zero,

positive but small, smaller than 1, exactly 1, larger than 1, and large but finite.
x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

(a) (b)

(c) (d)

(e) (f)

non-physical mode magneto gravity modes

Afvén modes

Fig. 3.1. Friedrichs diagrams for SMHD equations for u ¼ 0, g = 1, and (a) h = 1, B ¼ ð0; 0Þ, (b) h = 1, B ¼ ð0:2; 0Þ, (c) h = 1,

B ¼ ð0:5; 0Þ, (d) h = 1, B ¼ ð1; 0Þ, (e) h = 0.5, B ¼ ð1; 0Þ, (f) h = 0.2, B ¼ ð1; 0Þ.
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4. FVEG schemes

Consider an arbitrary system of hyperbolic conservation laws,
otU þ ox1F1ðUÞ þ ox2F2ðUÞ ¼ 0; ð4:1Þ

on a regular, cartesian, two-dimensional mesh, consisting of cells
Kij ¼ ðxi�1
2
; xiþ1

2
Þ � ðyj�1

2
; yjþ1

2
Þ;
where xi�1
2
¼ ði� 1

2
Þ�h and yj�1

2
¼ ðj� 1

2
Þ�h, �h is a mesh step. If we integrate (4.1) in space over one cell Kij and

in time over the interval [tn, tn + 1] (where tn = nDt) and then apply the Gauss law, we get
Unþ1
ij ¼ Un

ij �
1

jKijj

Z tnþ1

tn

Z y
jþ1

2

y
j�1

2

F1ðUðxiþ1
2
; y; tÞÞ � F1ðUðxi�1

2
; y; tÞÞ

� �
dy dt

� 1

jKijj

Z tnþ1

tn

Z x
iþ1

2

x
i�1

2

F2ðUðx; yjþ1
2
; tÞÞ � F2ðUðx; yj�1

2
; tÞÞ

� �
dxdt; ð4:2Þ
where
Un
ij ¼

1

jKijj

Z
Kij

Uðx; y; tnÞdxdy:
The idea of a finite volume evolution Galerkin (FVEG) scheme is to derive an update procedure for

the cell averages Un
ij by inserting the exact integral equations (3.2) into the finite volume update formula

(4.2) in order to evaluate fluxes on cell interfaces. Then, suitable numerical approximation techniques are

applied to everything in the resulting formula which cannot be evaluated exactly, see, e.g. [20,21] for

more details.
The finite volume update formula (4.2) must be applied in conservative variables, while the approximate

evolution operator will typically (but not necessarily) work with some primitive variables. In particular, for

the SMHD equations, we will construct the approximate evolution operator to the Powell-like form in

primitive variables (2.4). Also, note that the finite volume update formula is typically applied to the fully

non-linear system (because in general, there will not be a reasonable global linearization state), whereas the

evolution operator (3.2) requires a linearization. Therefore a suitable linearization state needs to be deter-

mined before each application of the evolution operator.
5. Approximation of the integral equations

In order to use the exact integral equation (3.2) numerically several approximations have to be made.

This yields the so-called approximate evolution operator. More precisely, the following building blocks

are necessary:

1. the recovery of a spatial function U constructed from the cell averages,
2. the time integration which occurs in the finite volume formulation,

3. the integration along cell interfaces occurring in the finite volume formulation,

4. the choice of the linearization state,

5. the integration over Sd�1 in the integral equation (3.2),

6. the time integral in the second part of the integral equation (3.2), and

7. the evaluation of the spatial derivatives of U in the second part of the integral equation (3.2).
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The items 1–6 will be realized with standard approximation techniques as described in the following sub-

section, whereas the last item has to be investigated carefully in order to obtain suitable results. This will be

discussed in Section 5.2. In order to summarize the whole FVEG scheme we present in Section 5.3 the

numerical algorithm.
5.1. The use of standard approximation techniques

In order to get a function defined on a computational domain X by means of a given family of cell aver-

ages, we use a conservative, piecewise bilinear recovery. More precisely, if we have given cell averages wij on

a regular mesh with mesh size �h, we approximate the exact solution on the mesh cell Kij by a bilinear

function
ŵðxÞjKij
¼ wij þ ðx1 � x01Þw

1
ij þ ðx2 � x02Þw

2
ij þ ðx1 � x01Þðx2 � x02Þw

12
ij ;
where x0 is the center of Kij and the coefficients w1
ij; w2

ij; and w12
ij , which approximate derivatives, are given

by
w1
ij ¼

wiþ1;j � wij

�h
u

wij � wi�1;j

wiþ1;j � wij

 !
;

w2
ij ¼

wi;jþ1 � wij

�h
u

wij � wi;j�1

wi;jþ1 � wij

 !
;

w12
ij ¼

wiþ1;jþ1 þ wi�1;j�1 � 2wij

�h2
u

2wij � wiþ1;j�1 � wi�1;jþ1

wiþ1;jþ1 þ wi�1;j�1 � 2wij

 !
:

Here, u is a limiter function out of the class that was discussed by Sweby [32]. We have made positive expe-

rience with the monotonized centered limiter, also known as minmod-2, which is given by
uðhÞ ¼

0; h 6 0;

2h; 0 6 h 6
1
3
;

1
2
ð1þ hÞ; 1

3
6 h 6 3;

2; 3 6 h:

8>>><
>>>:
Recall that the idea of this limiter is to use unlimited central differences as long as they are contained in the

so-called second-order TVD region, cf. [32]. This reconstruction is done for every component of the prim-

itive variables.

For the integrals appearing in the finite volume formulation we have already made good experience
with the midpoint rule in time and Simpson�s rule along the cell interfaces for hydrodynamical prob-

lems, see [20]. Therefore, we use for the first three equations of the SMHD system, i.e. for the hydro-

dynamical part, Simpson�s rule for the cell interface integrals. Further, we use the trapezoidal rule for

the last two equations, i.e. the Maxwell equations. Such a flux discretization leads to the FVEG scheme

that automatically satisfies a discrete version of the divergence condition (2.4), cf. also (6.1). Note that

the finite volume update is always done in the conservative variables and for the conventional form

(2.1) (in contrast to the Powell-like form) of the equations. This ensures that the overall scheme is

conservative.
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According to our quadrature rules along the cell interfaces, we need to apply the approximate

evolution operator centered at the cell vertices as well as at the midpoints of the cell interfaces. For

the linearization state we use averages of the four or two cells next to the point in which the operator

is applied.

In [19–21], the second author constructed schemes in which the integrals over the sonic circle S1 were
evaluated exactly. Due to the complexity of the SMHD equations this seems no longer to be possible

now. We have therefore decided to evaluate these integrals by suitable quadrature rules. Due to the peri-

odicity, it is irrelevant whether the rectangle rule or the trapezoidal rule is used. As quadrature points, we

chose the points (coshi, sinhi), where hi either takes the values
2pi
n

or
2pðiþ 1

2
Þ

n
;

where in both cases n is the number of quadrature points (which due to symmetry reasons should be a

multiple of 4) and i = 1, . . . ,n. In the second version, we purposely avoid that hi becomes a multiple of

p/2. In our numerical examples in Section 6, we have used the second variant with n = 8 or n = 16

points. We have experimented also with different number of integration points n, which were distributed

always regularly due to the periodicity of integrands. Numerical results showed only marginal

differences.

Finally, the time integral in the second part of the integral equations (3.2) was simply approximated
by the rectangle rule. We should point out that in the recent work of Lukáčová et al. [20], a new

approximation of time integrals along the Mach cone was proposed in such a way that any one-dimen-

sional plane wave aligned with the grid is computed exactly. This approximate evolution operator was

derived for the wave equation system, the shallow water equations, and the Euler equations and yields

more stable and accurate FVEG schemes. Application of this idea for the SMHD equations should be

investigated in future.
5.2. Evaluation of the spatial derivatives

It would be possible to take approximations to the spatial derivatives of U in (3.2) according to the

slopes of the piecewise bilinear reconstruction. However, these might be very poor approximations. In par-

ticular, when a term involving these derivatives is integrated along a path which crosses a cell interface

(which typically is the case), this approximation fails to include the necessary Dirac distribution for the

discontinuity of the reconstructed U.

For the wave equation system, the second author [19] found a possibility to transform the integral

equations in such a way, that all spatial derivatives disappear. The procedure how to do this consisted
of two essential ideas, one of which was applied to the single wave mode for which the wave front con-

centrates to a single point, and the other was applied to the remaining modes. This distinction between

two types of wave modes is typical for the general ideas of the current subsection. In what follows, we

distinguish between the so-called singular and non-singular wave modes; the more precise explanation

will follow.
5.2.1. Non-singular wave modes

We first concentrate on the wave modes with non-singular wave fronts. For these modes, the so-
called �useful lemma� was used in [19] to transform the space integral in such a way that the spatial

derivatives disappear, see [19, Lemma 2.1]. The main idea of this lemma is to recognize that the spatial

derivatives of U in (3.2) are always derivatives in a direction tangential to the integration path. This
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makes it possible to rewrite them as derivatives with respect to h (where h is the variable which param-

eterizes the path) and then to use integration by parts. This shifts the h derivative to known terms

(which originate from the hyperbolic structure of the system), so that the derivatives can be performed

in advance.

Thus, the key point is just the fact that the direction of the spatial derivative is tangential to the integra-
tion path. We will now prove that this is true for arbitrary hyperbolic systems, so that there is always a

generalization of this �useful lemma� for the non-singular wave modes. However, as it turns out, before

one can apply the integration by parts, it is necessary to divide by the length element of the integration path.

For some wave modes, this length element may vanish. This is the reason why there is no such �useful
lemma� for those modes, which we call singular wave modes.

The essential expression to examine is
lk
n

Xd
s¼1

ðonskkn � 1� A
s
ÞoxsU ; ð5:1Þ
compare (3.2), where d = 2. (In particular, the leading factor rkn only makes a vector out of the scalar-valued

expression in (5.1) but has got no influence on the direction of the derivative.) Precisely, (5.1) is a sum of

directional derivatives of the m components of the vector U. This derivative is evaluated at the point
xþ rrnk

k
n; where r ¼ s� tnþ1. If we parameterize the integration path by h, i.e. we set
n ¼ nðhÞ ¼ ðcos h; sin hÞ; ð5:2Þ

then our goal is to show that the direction of each of the directional derivatives in (5.1) is tangential to

the derivative with respect to h of the point at which (5.1) is evaluated, i.e. tangential to ohrnk
k
nðhÞ. But it

follows from the characteristic theory that ohrnk
k
nðhÞ is always orthogonal to n(h). This is because

ohrnk
k
nðhÞ is of course tangential to the wave front, whereas n(h) is known to be the normal direction,

i.e. normal to the wave front (see also [14, end of Section 3.4]; note that n is called p there). Since

in R2 the direction of a vector is uniquely given by a non-zero normal vector, it suffices to show that

the direction of each of the directional derivatives in (5.1) is orthogonal to n. In symbols, we have to

show that
lk
n

Xd
s¼1

ðonskkn � 1� A
s
Þns ¼! 0:
But we get
lk
n

Xd
s¼1

ðonskkn � 1� A
s
Þns ¼ lk

n

Xd
s¼1

onsk
k
nns � 1� lk

n

Xd
s¼1

A
s
ns ¼ lk

n
ðn � rnk

k
n � kknÞ:
Again using the characteristic theory, we see that this in fact vanishes since n � rnk
k
n ¼ kkn, see [14, Lemma

3.4.3]. Thus, we have proven that the integral in the second part of the evolution operator (3.2) can always

(except in singular cases, see below) be transformed in such a way that the spatial derivatives of U disap-

pear. We have obtained the following result:

Lemma 5.1. In the second part of the evolution operator (3.2), the direction of the directional derivative of

each component of U is always tangential to the integration path, as long as the parameterization by h does not

become singular.

We will now demonstrate how this transformation can actually be found. The result of the preceding

paragraph is that the direction of the directional derivative of each component of U in (5.1) is tangential

to ohrnk
k
nðhÞ, i.e. there must be a vector vk

n
such that
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lk
n
ðonskkn � 1� A

s
Þ ¼ vk

n
ohonsk

k
n; s ¼ 1; . . . ; d; ð5:3Þ
where n is always given by (5.2). Inserting this into (3.2), we get that
Z
Sd�1

rknl
k
n

Xd
s¼1

ðonskkn � 1� A
s
ÞoxsUðxþ rrnk

k
n; sÞdn ð5:4aÞ

¼
Z 2p

0

rknv
k
n

Xd
s¼1

ohonsk
k
noxsUðxþ rrnk

k
n; sÞdh ð5:4bÞ

¼
Z 2p

0

rknv
k
n
ohrnk

k
n � rxUðxþ rrnk

k
n; sÞ

� �
dh ð5:4cÞ

¼
Z 2p

0

rknv
k
n
� 1
r

d

dh
Uðxþ rrnk

k
n; sÞdh ð5:4dÞ

¼ � 1

r

Z 2p

0

d

dh
ðrknvknÞUðxþ rrnk

k
n; sÞdh; ð5:4eÞ
where the last equality is the integration by parts with respect to h; the boundary terms cancel due to the

periodicity of the integrand. Furthermore, from (5.3), it follows that
vk
n
¼ 1

johrnk
k
nj
2
lk
n

Xd
s¼1

ohonsk
k
n � ðonsk

k
n � 1� A

s
Þ: ð5:5Þ
We thus have found a transformation of the n integral of the evolution operator into a form where no

derivatives of the solution U occur and the only derivatives that appear can be determined in advance.
However, this transformation cannot be applied in the following two cases:

� If r = 0, the transformation is undefined. But, since we approximate the time integral with the rectangle

rule, we are only interested in the case r = tn � tn + 1 6¼ 0.

� If ohrnk
k
n ¼ 0, the transformation is also undefined. This is in particular the case for those modes

whose wave fronts degenerate to points. For these modes, we have that the ray velocity rnk
k
n is inde-

pendent of n (and thus of h). We have not yet examined whether modes for which the wave front is

only locally singular also cause problems. We have here in mind such modes, where ohrnk
k
n ¼ 0 at a

single point, but ohrnk
k
n is not entirely independent of h, cf. the slow magneto-acoustic waves of the

MHD equations.

The actual terms which appear in the transformed integral may become very complicated. We found out

that there is also a suitable approximation of the integrand, which is comparatively simple. Recall that we

anyway approximate the integral by evaluation of the integrand in a finite number of quadrature points.

Let hi be these quadrature points with respect to h, and let
ni ¼ nðhiÞ ¼ ðcos hi; sin hiÞ and qk
i
¼ xþ rrnk

k
ni
be the respective quadrature points with respect to n and with respect to x. By qki;s, we denote the sth com-

ponent of the vector qk
i
. Consider now the integrand in (5.4d) at h = hi and approximate the h derivative by

a one-sided difference given by the points hi and hi+1. This yields
1

r
rknv

k
n

d

dh
Uðxþ rrnk

k
nÞ
����
n¼ni

� 1

r
rkni
vk
ni

Uðqk
iþ1

Þ �Uðqk
i
Þ

Dh
: ð5:6Þ
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If we now insert the representation of vk
n
given in (5.5) and approximate all h derivatives in that represen-

tation in the same way as above, we can approximate the right-hand side of (5.6) by
1

r
rkni

r2Dh2

jqk
iþ1

� qk
i
j2
lk
ni

Xd
s¼1

qkiþ1;s � qki;s
rDh

� ðonskkni � 1� A
s
Þ
Uðqk

iþ1
Þ �Uðqk

i
Þ

Dh

¼ rkni
lk
ni

Xd
s¼1

ðonskkni � 1� A
s
Þ
ðqkiþ1;s � qki;sÞðUðqk

iþ1
Þ �Uðqk

i
ÞÞ

jqk
iþ1

� qk
i
j2

:

We have thus found an approximation of the integral which does neither contain any derivatives nor essen-

tially more complicated terms than the original integral. Furthermore, we see that our approximation can
formally be obtained by just replacing the derivative
oxsUðqk
i
Þ with

ðqkiþ1;s � qki;sÞðUðqk
iþ1

Þ �Uðqk
i
ÞÞ

jqk
iþ1

� qk
i
j2

: ð5:7Þ
Note, however, that there is no reason why this replacement should be a sensible approximation for each s

individually. This is only true for the whole integrand. The same result, of course, holds if one uses back-

ward differences, i.e. one replaces
oxsUðqk
i
Þ with

ðqki�1;s � qki;sÞðUðqk
i�1

Þ �Uðqk
i
ÞÞ

jqk
i�1

� qk
i
j2

: ð5:8Þ
In order to obtain a symmetric formula we use the average of both approximations.

In fact, the U difference is mainly determined by the slopes of the piecewise bilinear reconstruction. How-

ever, the above approximation automatically includes an approximation to the Dirac distribution for the

discontinuity of the reconstructed U whenever the integration path crosses a cell interface. Just to keep

it clear we would like to note that the use of (5.4e) would principally be possible, but the resulting formulae
will be too complicated and we have refrained from this choice. Instead we use approximations (5.7), (5.8),

which are based on the same fact that enables also (5.4e), but moreover they have an advantage that the

Dirac distribution, which appears when the integration path crosses a cell interface, is automatically

included.
5.2.2. Singular wave modes

For the modes with singular wave front, the idea in earlier publications, see, e.g. [19], was to insert the

differential equation itself into the respective part of the integral equations. This led to a formula where this
wave mode was left out completely in the approximate evolution operator and instead certain components

of the result were multiplied by corresponding factors. We now found out that there is a generalization of

this idea to arbitrary systems. This technique can be applied to any subset of wave modes, no matter

whether they are singular or not. The multiplication of certain components with certain factors generalizes

to the multiplication of the result with the inverse of a certain m · mmatrix which in general depends on the

linearization state. This matrix may, of course, be more or less difficult to invert; it may be badly condi-

tioned or even singular. For the wave equation system as well as for the shallow water equations, this

matrix is a diagonal matrix with constant, non-zero diagonal entries, so that the computation of the inverse
is trivial.

We will now demonstrate how this generalization works. Let K and K 0 be two complementary subsets of

the set {1, . . . ,m} of wave mode indices. For any k 2 K and n 2 Sd � 1, we insert the equality
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Z tnþ1

tn

Xd
s¼1

ðonskkn � 1� A
s
ÞoxsUðxþ ðs� tnþ1Þrnk

k
n; sÞds

¼
Z tnþ1

tn

otU þ
Xd
s¼1

onsk
k
noxsU

 !
ðxþ ðs� tnþ1Þrnk

k
n; sÞds

¼
Z tnþ1

tn

d

ds
Uðxþ ðs� tnþ1Þrnk

k
n; sÞds ¼ Uðx; tnþ1Þ �Uðx� Dtrnk

k
n; tnÞ
into the operator (3.2). Collecting U(x, tn+1), we get
1� 1

jSd�1j

Z
Sd�1

X
k2K

rknl
k
n
dn

 !
Uðx; tnþ1Þ ¼

1

jSd�1j
Xm
k2K 0

Z
Sd�1

rknl
k
n
Uðx� Dtrnk

k
n; tnÞdn

�

þ
Z tnþ1

tn

Z
Sd�1

rknl
k
n

Xd
s¼1

ðonskkn � 1� A
s
ÞoxsUðxþ ðs� tnþ1Þ

�rnk
k
n; sÞdnds

�
:

Thus, we leave out completely the modes contained in K and then multiply the result of the evolution oper-

ator with the inverse of the matrix
JðKÞ :¼ 1� 1

jSd�1j

Z
Sd�1

X
k2K

rknl
k
n
dn ¼ 1

jSd�1j

Z
Sd�1

X
k2K 0

rknl
k
n
dn:
As already mentioned, we can choose K to be any subset of {1, . . . ,m}. However, the more modes we in-

clude in K, the more likely the matrix JðKÞ might become difficult to invert or even singular. In particular,

note that for K = {1, . . . ,m}, we have JðKÞ ¼ 0. Since we have already found a satisfying way to approx-

imate the evolution operator for the non-singular wave modes, cf. Section 5.2.1, we will restrict ourselves to

the case that K consists of singular modes.

For example, for the shallow water equations, cf. Lukáčová [18], we have only one singular wave mode,
the so-called shear wave mode corresponding to the middle bicharacteristic curve, which points out just the

advection direction. If we choose K to consist of this one mode, we get
JðKÞ ¼
1 0 0

0 1
2

0

0 0 1
2

0
B@

1
CA;
which can be inverted easily.

For the SMHD equations we have three singular wave modes: the two Alfvén modes (1 and 2) and the
non-physical mode (5). For K = {1,2}, we get
JðKÞ ¼

1 0 0 0 0

0 1
2

0 0 0

0 0 1
2

0 0

0 0 0 1
2

0

0 0 0 0 1
2

0
BBBBBB@

1
CCCCCCA
; ð5:9Þ
which is comparably easy to handle, but we still have to deal with the non-physical mode. If, on the other

hand, we choose K = {1,2,5}, then we get the essentially more complicated matrix
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JðKÞ ¼

1 0 0 0 0

0 1
2

0 0 0

0 0 1
2

0 0

0 0 0 1
2

0

0 0 0 0 1
2

0
BBBBBB@

1
CCCCCCA

� 1

2p

Z
S1

1

ðB � nÞ2 þ gh

ðB � nÞ2 0 0 hn1ðB � nÞ hn2ðB � nÞ
0 0 0 0 0

0 0 0 0 0

gn1ðB � nÞ 0 0 ghn21 ghn1n2
gn1ðB � nÞ 0 0 ghn1n2 ghn22

0
BBBBBB@

1
CCCCCCA
dn:

ð5:10Þ
It is not easy, but possible, to find a closed form for the integrals appearing in (5.10). The second term on

the right-hand side of (5.10) is a rank 2 matrix. Therefore, JðKÞ can be written as the sum of a diagonal

matrix and a rank 2 matrix. The Sherman–Morrison–Woodbury formula (see, for example [12, p. 51]) en-

ables us to obtain a comparatively simple representation of the inverse of this matrix. A problem occurs
when B̂ (i.e. the magnetic field of the linearization state) is near zero, because at B̂ ¼ 0 the matrix JðKÞ be-
comes singular. This means that the choice K = {1,2,5} is not allowed when B̂ is near zero.

Thus, we have the following three main possibilities for replacing the spatial derivatives of U in the case

of singular wave modes:

1. Use K = {} and approximate the spatial derivatives using the slopes of the piecewise bilinear

reconstruction.

2. Use K = {1,2} (i.e. use the simple matrix given in (5.9)) and approximate the spatial derivatives for the
non-physical mode using the slopes of the piecewise bilinear reconstruction.

3. Use K = {1,2,5} (i.e. the more complicated matrix given in (5.10)) if B̂ is away from zero, but K = {1,2}

if B̂ is near zero.

We have experimented numerically with the above three variants. Our numerical results using variants 2 or

3 yield unsatisfactory resolutions, see Section 6.2. Therefore, we suggest to refrain from these possibilities

and approximate the spatial derivatives for the singular wave fronts just by using the piecewise bilinear

reconstruction. Anyway, note that the problematic case that the spatial integration path crosses a cell inter-
face cannot occur in these cases, since this path reduces to a point.
5.3. Numerical algorithm

1. Given is a piecewise constant approximation at time tn : Un
ij; i; j 2 Z, mesh and time steps �h,Dt.

2. Recovery step:

Construct piecewise bilinear functions and apply the limiter procedure, e.g. by using the minmod limter,

cf. [21], or monotonized minmod limiter; cf. Section 5.1. This yields the piecewise bilinear approxima-
tions ŵ

n
, where w is an arbitrary component of the vector of primitive variables (h,u,B)T.

3. Local linearization:

At each vertex as well as at each midpoint of cell interfaces choose a linearization state for local linear-

ization, cf. (2.5). This is done by averaging the two or four neighbouring states for a midpoint or a

vertex, respectively.

4. Predictor step/approximate evolution:

Compute the intermediate solutions at time level tn + 1/2 on the cell interfaces by the approximate

evolution operators, cf. (3.2) (with Dt replaced with Dt/2), where Û is used as the data at tn. The com-
putation is realized in primitive variables. The approximation of integrals in (3.2) is obtained as follows:

(a) Integration over Sd�1 is replaced with finitely many quadrature points of the rectangle rule; cf.

Section 5.1.



T. Kröger, M. Lukáčová-Medvid�ová / Journal of Computational Physics 206 (2005) 122–149 137
(b) Time integral, or the so-called mantle integral, in the second part of (3.2) is approximated using the

rectangle rule at time tn.

(c) The spatial derivatives are approximated as explained in Section 5.2.1 (magneto-gravity modes) or

by the slopes of Û (Alfvén and non-physical modes), cf. Section 5.2.2 variant 1. Alternatively, Sec-

tion 5.2.2, variant 2 and 3 can be used.
5. Corrector step/FV-update:

Do the FV-update in conservative variables using the midpoint rule in time and midpoint, trapezoidal or

Simpson rule along the cell interfaces. In the experiments presented below we have used the Simpson rule

for the flow equations (i.e. first three equations of (4.2)) and the trapezoidal rule for the magnetic field

equations (i.e. last two equations of (4.2)). Fluxes at cell interfaces are evaluated at the predicted values

obtained by the approximate evolution operator in Step 4.

We remind the reader that the question of suitable quadrature rules along cell interfaces has been exten-
sively studied with respect to stability of the whole FVEG scheme in our previous paper [21]. The use of

midpoint rule yields a scheme similar to standard Godunov splitting schemes. By using the combination

of the trapezoidal and the Simpson rule we have taken multidimensional effects into account and obtained

a scheme, which satisfy the discrete divergence condition, cf. Section 6.3.
6. Numerical examples

We now demonstrate the behavior of the described scheme on test problems for the SMHD equations in

one and two space dimensions. We use a CFL number of 0.45 in all computations. We have experimented

with different CFL numbers, in fact numerical results indicate that the FVEG scheme stays stable until

CFL � 0.56, which is in agreement with stability investigations of the FVEG3 scheme for the linear wave

equation system [21,23]. In [20] new quadrature rules for time integration along the bichracteristic cone

have been derived and lead to a stability limit close to 1. However, due to a more complex structure of

the SMHD system the application of these quadratures is not straightforward and this point should be

investigated in future deeply.
6.1. Riemann problem

Our first test example is the Riemann problem used by Rossmanith [31]. It is given by the initial

data
x < 0 : h ¼ 1; u ¼ ð0; 0Þ; B ¼ ð1; 0Þ;
x > 0 : h ¼ 2; u ¼ ð0; 0Þ; B ¼ ð0:5; 1Þ;
and the gravitational constant g = 1. The numerical solution, that is shown in Fig. 6.1, was computed with a

two-dimensional algorithm described above at t = 0.4 on the grid with 100 cells in x-direction and 5 cells in

y-direction.

The reference solution (solid line) was obtained with the same scheme, but with 1000 · 5 cells. Compar-

ing the plots with Rossmanith�s [31] results, we see that the scheme produces a qualitatively correct solu-
tion. We should point out, however, that there are still some oscillations (at both the low and the high

resolution) in all components near the right Alfvén discontinuity.

Note that the intrinsic divergence constraint, i.e. r � ðhBÞ ¼ 0, is automatically maintained, because the

flux function F1 in x1-direction has got a zero in the component corresponding to the conservative variable

hB1. See also (2.2) and note that the matrix BTu � uTB has vanishing diagonal entries.
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Fig. 6.1. Numerical solution for the Riemann problem with 100 · 5 cells (dots) and 1000 · 5 cells (solid line).
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6.2. Example for approximations of singular wave modes

We now demonstrate what happens when the singular wave modes are handled by the different ap-

proaches proposed in Section 5.2.2. We compute the same one-dimensional Riemann problem as in Section

6.1, but now using the variants 2 and 3, cf. p. 20. The results are shown in Figs. 6.2 and 6.3, respectively.
Both numerical solutions look much worse than the result in Section 6.1, which was computed using the

variant 1. We thus suggest to refrain from variants 2 and 3 at all and approximate, as already mentioned in

Section 5.2.2, the spatial derivatives for the singular wave modes using the slopes of the piecewise bilinear

reconstruction. We think that for these wave modes a better quadrature rule in time (along the bicharac-

teristic curve), which takes care of possible Dirac distributions for discontinuities of the solution along this

curve, could bring better results.

6.3. Two-dimensional problem with shocks

This two-dimensional example is similar to the �rotor problem� used by Tóth [35] for the MHD equa-

tions. The computational domain is [�1,1] · [�1,1], equipped with zeroth order extrapolation at the

boundaries. The initial data are
kxk < 0:1 : h ¼ 10; u ¼ ð�x2; x1Þ; B ¼ ð0:1; 0Þ;
kxk > 0:1 : h ¼ 1; u ¼ ð0; 0Þ; B ¼ ð1; 0Þ;
and the gravitational constant is g = 1. Note that hB is constant in the initial data and thus divergence-free.

The discrete divergence was computed in a vertex-centered way given as
divðhBÞiþ1=2;jþ1=2 ¼ lydxðhB1Þiþ1=2;jþ1=2 þ lxdyðhB2Þiþ1=2;jþ1=2; i; j 2 Z; ð6:1Þ
where wi±1/2,j±1/2 := w((i ± 1/2)�h, (j ± 1/2)�h) denotes the values of any function w at vertices of the mesh cell

Kij. Here we used the finite difference operators
lxwðxÞ ¼
1

2
½wðxþ �h=2Þ þ wðx� �h=2Þ�; dxwðxÞ ¼ wðxþ �h=2Þ � wðx� �h=2Þ
with an analogous notation for the y-direction. In fact the particular choice of the trapezoidal rule for the

flux interface integrals of the Maxwell equations yields such a structure of the FVEG scheme which fulfills

also more general conditions needed in order to satisfy the divergence-free constraint in general [33]. We

should also point out that in [24] the discrete vorticity for the wave equation system was defined in an anal-

ogous way to (6.1). It has been shown in [24] that the Lax–Wendroff (Richtmyer rotated) scheme is vortic-
ity-preserving. Actually, the multidimensional FVEG scheme that uses the trapezoidal rule for cell

interfaces shares some similarities with the Lax–Wendroff scheme.

In the following we will show that for the numerical solution of the FVEG scheme the discrete diver-

gence defined in (6.1) is constant in time, more precisely we show that if it was zero initially, it stays zero

at any time. Consider the last two equations of (2.1) and (2.2), i.e. the Maxwell equations
ot
hB1

hB2

� �
þ ox

0

�f

� �
þ oy

f

0

� �
¼

0

0

� �
;

where f = hB1u2 � hB2u1 is the flux function. Further let us denote by fi±1/2,j and fi,j±1/2 the approximations

of the fluxes at cell interfaces, which are obtained by the trapezoidal rule using the intermediate solution U*

at vertices. Thus, we have, for example for the right and upper cell interfaces,
fiþ1=2;j ¼ lyf ðU�
iþ1=2;jÞ; f i;jþ1=2 ¼ lxf ðU�

i;jþ1=2Þ:
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Fig. 6.2. Numerical solution for the Riemann problem with 100 · 5 cells using variant 2 of Section 6.1.
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Fig. 6.3. Numerical solution for the Riemann problem with 100 · 5 cells using variant 3 of Section 6.1.
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The intermediate approximations at vertices U* are obtained by the approximate evolution operator, i.e.

using approximation of the evolution operator (3.1) at each vertex.

Now assume that at time tn, divðhBÞniþ1=2;jþ1=2 ¼ 0; i; j 2 Z. Then it follows from the FV update as well as

from (6.1) that
divðhBÞnþ1

iþ1=2;jþ1=2 ¼ �Dt
�h

lydxdylxf ðU�
iþ1=2;jþ1=2Þ � lxdydxlyf ðU�

iþ1=2;jþ1=2Þ
h i

¼ 0: ð6:2Þ
Our numerical experiments confirm that the discrete divergence (6.1) is zero up to the machine precision for

different mesh parameters �h.
Contour plots of the result at t = 0.2 for 200 · 200 cells are shown in Fig. 6.4. Plots with higher resolu-

tion, i.e. 300 · 300 cells, are shown in Fig. 6.5. We can notice that the FVEG scheme resolves correctly

multidimensional discontinuities as expected.

6.4. Empirical order of convergence

In this experiment we test experimental order of convergence for a smooth solution. We consider the

initial value problem for two-dimensional SMHD equation with the initial values
hðx; 0Þ ¼ 1

4
; B1ðx; 0Þ ¼

1

2
; B2ðx; 0Þ ¼ 1;

uðx; 0Þ ¼ 1þ 1

2
sinðpyÞ þ 1

4
cosðpxÞ;

vðx; 0Þ ¼ 1þ 1

4
sinðpxÞ þ 1

2
cosðpyÞ;
see also [34] for an analogous test problem for the full MHD system. Although an exact solution is not

known, we can still study the experimental order of convergence (EOC). This is computed in the following

way using three meshes of sizes N1, N2 := N1/2, N3 := N2/2, respectively,
EOC ¼ log2
kUn

N2
�Un

N3
k

kUn
N1

�Un
N2
k :
Here, Un
N is the approximate solution on the mesh with N · N cells. The computational domain

[�1,1] · [�1,1] was consecutively divided into 20 · 20,40 · 40, . . . , 160 · 160 cells. The final time was taken

to be t = 0.2. Table 1 and Table 2 show the experimental order of convergence computed in the L2 and L1

norms, respectively. We also show the convergence rate for the first component h as well as for the magnetic
field B. It can be seen clearly that the experimental order of convergence is 2. Note, however, a slightly

decreasing order of the convergance rate on finer meshes. We believe that a more suitable quadrature rules

for time integrals in the second part of the integral equations (3.2), which would be analogous to those of

the Euler equations [20], will increase a stability range of the scheme as well as its global accuracy. To do

this it would be necessary to derive an approximate evolution operator without spatial derivatives of

unknown function. This is a point for future study.

6.5. Two-dimensional explosion problem/transcritical flow

This is a two-dimensional analogy of the cylindrical explosion problem for the gas dynamics, cf. the Sod

2D problem [20]. The initial data are
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Fig. 6.4. Contour plots of the two-dimensional rotor-like problem with 200 · 200 cells.
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h ¼ 1; u1 ¼ 0; u2 ¼ 0; B1 ¼ 1; B2 ¼ 0; kxk < 0:3;

h ¼ 0:1; u1 ¼ 0; u2 ¼ 0; B1 ¼ 0:1; B2 ¼ 0 else:
In an analogy to the Sod problem for gas dynamics, the flow is transcritical, i.e.

Fr :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghþ B2

1 þ B2
2

q
is larger, equal or smaller than 1, cf. Fig. 6.7. It should be pointed out that

the FVEG method needs no special entropy fix correction in order to resolve correctly critical states, i.e.

Fr = 1. This is again analogous to the situation of the Euler equations, see also [21].

The computational domain is a square [�1,1] · [�1,1], the mesh is rectangular and the initial data are

implemented by cutting the initial discontinuity and assigning it by modified area-weighted values accord-

ing to the corresponding cell. The initial data are moreover discretized in such a way that diveregence of h B

stays zero. Fig. 6.6 shows the isolines of height and x,y-components of velocity, magnetic field and the
parameter Fr computed at time t = 0.25. It can be seen clearly that due to the influence of the magnetic field

the solution is now no more rotationally symmetric as it was the case of the Sod 2D problem for the gas

dynamics. The solution exhibits a shock traveling away from the center, a rarefaction wave traveling

towards the origin at (0,0) and two Alfvén waves. In Fig. 6.7 the y = 0 cross-sections are plotted; slower

Alfvén waves that are located between the rarefaction wave and the shock are evident in the tangential com-

ponents of velocity and magnetic field. Small oscillations near the Alfvén modes can be noticed, however we

should also take into account that the scalling of u2 and B2 graphs is of order 10
�3. The discrete divergence

(6.1) stays zero up to the machine accuracy.
We mention that an analogous initial data problem have been studied extensively by many authors for

the full ideal MHD system, see, e.g. [2]. Since the MHD system is a non-convex, non-strictly hyperbolic

system, there exist discontinuities that are evolutionary and non-evolutionary. If a strictly coplanar prob-

lem (2D problem) for the MHD system is considered the solution can be non-unique. Depending on a

scheme a non-evolutionary solution in the form of the so-called compound wave can be found. In fact, this

compound wave is unstable, under normal perturbations in transverse quantities it is changed into a rota-

tional discontinuity and a slow shock, cf., e.g. [16]. For the SMHD system it is important to realize that

$kkr
k, k = 3,4, do not change sign. Thus, the magneto-gravity modes are convex and we do not have com-

pound shocks.
7. Conclusion

In the present paper we have derived a second-order FVEG scheme for the SMHD equations. Up to our

knowledge, this is the first attempt to apply genuinely multidimensional EG technique to a magnetohydro-

dynamic model. We have derived an integral equations for the SMHD equations, cf. (3.2), and discussed its
suitable approximation. We have studied more deeply the approximation of the spatial derivatives in the

integral equations (3.2) for singular as well as non-singular wave modes. More precisely, we have shown

that for arbitrary hyperbolic conservation laws, the spatial derivatives of the solution U can be replaced

by means of the Gauss theorem with the derivatives of the eigenvectors themselves, cf. Lemmas 5.1 and 5.4.

Due to the complex eigenstructure which arises in the SMHD system, it is still rather complicated to

apply this result directly. Instead we propose to exploit this result numerically as given in (5.6). Our numer-

ical experiments confirm the reliability of this approach for non-singular wave modes.

Treatment of the singular wave modes is more delicate. Our numerical experiments show that the
approximation of the derivatives in (3.2) by slopes of the bilinear reconstruction yields the best results,

cf. Section 6.2. We believe that more suitable numerical quadratures for the mantle integrals from tn to

tn+1 in the integral equations (3.2) can increase accuracy as well as stability of the scheme. They should,

analogously as in [20], reflect propagation of one-dimensional waves exactly. This is a subject of our future

study.



Table 1

FVEG scheme/convergence in the L2 norm

N kUn
N=2 �Un

Nk EOC khnN=2 � hnNk EOC kBn
N=2 � Bn

Nk EOC

20 0.007317 0.002130 0.003234

40 0.001721 2.0880 0.000501 2.0879 0.000793 2.0279

80 0.000406 2.0837 0.000116 2.1107 0.000204 1.9588

160 0.000107 1.9239 0.000034 1.7705 0.000056 1.8651

Table 2

FVEG scheme/convergence in the L1 norm

N kUn
N=2 �Un

Nk EOC khnN=2 � hnNk EOC kBn
N=2 � Bn

Nk EOC

20 0.011766 0.001508 0.002569

40 0.002837 2.0522 0.000344 2.1322 0.000647 1.9894

80 0.000702 2.0148 0.000080 2.1043 0.000172 1.9114

160 0.000187 1.9084 0.000024 1.7370 0.000047 1.8716
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The discretization of the flux interface integrals for the magnetic field, i.e. for the Maxwell equations

part, was done by the trapezoidal rule. In such a way the discrete divergence (6.1) is identically zero at each
vertex.

One major advantage of the current description and implementation of the FVEG scheme is that it is

designed in a black-box like manner and should therefore be applicable to any system of hyperbolic con-

servation laws with comparatively low effort, if the complete hyperbolic structure of the system is known

(see Tables 1 and 2).
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